
International Journal of Computer Trends and Technology Volume 68 Issue 4, 1-4, April 2020

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V68I4P101 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Security Systems for DNS using Cryptography

Satyam Akunuri
1
, Sanjeev Bandru

2
, Chandu Naik Azmera

3

1,2,3
Assistant Professor & Computer Science and Engineering & SNIST, Hyderabad, India

Received Date : 23 February 2020

Revised Date: 09 April 2020

Accepted Date: 11 April 2020

Abstract - The mapping or binding of IP addresses to

hostnames became a major problem in networking systems.

DNS Security is designed to provide security by combining

the concept of both the Digital Signature and Asymmetric key

(Public key) Cryptography. Here the Public key is sent

instead of the Private key.

The DNS security uses Message-Digest Algorithm to

compress the Message (textfile) and PRNG(Pseudo Random

Number Generator) Algorithm for generating Public and

Private keys.

Keywords - DNS, Digital Signature, Cryptography, ECC,

ECDSA.

I. INTRODUCTION

The Domain Name System (DNS) can be considered

one of the most important components of the modern

Internet. DNS provides a means to map IP addresses

(random, hard-to-remember numbers) to names (easier to

remember and disseminate). Without DNS, we would have

to remember that www.amazon.com is actually the IP

address 72.21.207.65, and that would be hard to change.

DNS is really the most successful, largest distributed

database. In recent years, however, a number of DNS

exploits have been uncovered. These exploits affect the

system in such a way that an end-user cannot be certain the

mappings he is presented with are, in fact, legitimate. The

DNS Security (DNSSEC) standard has been written in an

attempt to mitigate some of the known security issues in the

current DNS design used today. Finally, we will analyse the

impacts of DNSSEC on embedded platforms and mobile

networks.

II. SCOPE
The Domain Name System (DNS) has become a critical

operational part of the Internet Infrastructure, yet it has no

strong security mechanisms to assure Data Integrity or

Authentication. Extensions to the DNS are described that

provide these services to security-aware resolves are

applications through the use of Cryptographic Digital

Signatures. These Digital Signatures have included zones as

resource records.

The extensions also provide for the storage of Authenticated

Public keys in the DNS. This storage of keys can support

general Public key distribution services as well as DNS

security. These stored keys enable security-aware resolvers

to learn the authenticating key of zones, in addition to those

for which they are initially configured. Keys associated with

DNS names can be retrieved to support other protocols. In

addition, the security extensions provide for the

Authentication of DNS protocol transactions.

DNS Security is designed to provide security by

combining the concept of both the Digital Signature and

Asymmetric key (Public key) Cryptography. Here the Public

key is sent instead of the Private key. The DNS security uses

Message-Digest Algorithm to compress the Message (text

file) and PRNG(Pseudo Random Number Generator)

Algorithm for generating Public and Private keys. The

Message combines with the Private key to form a Signature

using DSA Algorithm, which is sent along with the Public

key.

The receiver uses the Public key and DSA Algorithm to

form a Signature. If the Signature matches with the Signature

of the Message received, the Message is Decrypted and read

else discarded.

III. DOMAIN NAME SPACE (DNS)

As a tree is traversed in an ascending manner (i.e., from

the leaf nodes to the root), the nodes become increasingly

less specific (i.e., the leftmost label is most specific, and the

rightmost label is least specific). Typically in an FQDN, the

leftmost label is the hostname, while the next label to the

right is the local domain to which the host belongs. The local

domain can be a subdomain of another domain. The name of

the parent domain is then the next label to the right of the

subdomain (i.e., local domain) name label, and so on, till the

root of the tree is reached

.

Satyam Akunuri et al. / IJCTT, 68(4), 1-4, 2020

2

Fig. 3.1 Domain name space example

The DNS is a hierarchical tree structure hoserootnodeis

known as the root domain. A label in a DNS name directly

corresponds with a node in the DNS tree structure. A label is

an alphanumeric string that uniquely identifies that node

from its brothers. Labels are connected together with a dot

notation, ., and a DNS name containing multiple labels

represents its path along the tree to the root. Labels are

written from left to right. Only one zero-length label is

allowed and is reserved for the root of the tree. This is

commonly referred to as the root zone. Due to the root label

being zero-length, all FQDNs end in a dot [RFC 1034].

When the DNS is used to map an IP address back into a

hostname (i.e., inverse resolution), the DNS makes use of the

same notion of labels from left to right (i.e., most specific to

least specific) when writing the IP address. This is in contrast

to the typical representation of an IP address whose dotted

decimal notation from left to right is least specific to most

specific.

Fig. 3.2. Example of inverse domains and the Domain Name Space

To handle this, IP addresses in the DNS are typically

represented in reverse order. IP addresses fall under a special

DNS top-level domain (TLD), known as the in-and. Arpa

domain. By doing this, using IP addresses to find DNS

hostnames are handled just like DNS hostname lookups to

find IP addresses.

A. DNS Components

The DNS has three major components, the database, the

server, and the client [RFC 1034]. The database is a

distributed database and is comprised of the Domain Name

Space, which is essentially the DNS tree, and the Resource

Records (RRs) that define the domain names within the

Domain Name Space. The server is commonly referred to as

a name server. Name servers are typically responsible for

managing some portion of the Domain Name Space and for

assisting clients in finding information within the DNS tree.

Name servers are authoritative for the domains in which they

are responsible. They can also serve as a delegation point to

identify other name servers that have authority over sub-

domains within a given domain.

B. DNS Transactions

 DNS transactions occur continuously across the

Internet. The two most common transactions are DNS zone

transfers and DNS queries/responses. A DNS zone transfer

occurs when the secondary server updates its copy of a zone

for which it is authoritative. The secondary server makes use

of the information it has on the zone, namely the serial

number, and checks to see if the primary server has a more

recent version. If it does, the secondary server retrieves a

new copy of the zone.

A DNS query is answered by a DNS response. Resolvers

use a finite list of name servers, usually not more than three,

to determine where to send queries. If the first name server in

the list is available to answer the query, then the others in the

list are never consulted. If it is unavailable, each name server

in the list is consulted until one is found that can return an

answer to the query. The name server that receives a query

from a client can act on behalf of the client to resolve the

query. Then the name server can query other name servers

one at a time, with each server consulted being presumably

closer to the answer. The name server that has the answer

sends a response back to the original name server, which

then can cache the response and send the answer back to the

client. Once an answer is cached, a DNS server can use the

cached information when responding to subsequent queries

for the same DNS information. Caching makes the DNS

more efficient, especially when under heavy load. This

efficiency gain has its tradeoffs; the most notable is

insecurity.

IV. DNS SECURITY

Satyam Akunuri et al. / IJCTT, 68(4), 1-4, 2020

3

A. Security Need

As originally designed, DNS has no means of

determining whether the domain name data comes from the

authorized domain owner or has been forged. This weakness

in security leaves the system to be vulnerable to a number of

attacks, like DNS cache poisoning, DNS spoofing etc. Due to

weak authentication between DNS servers exchanging

updates, an attacker may predict a DNS message ID and

manage to reply before the legitimate DNS server, thus

inserting a malicious record into the DNS database. The

exploit forces a compromised DNS server to send a request

to an attacker's DNS server, which will supply the wrong

host to IP mapping.

 DNS Security Extensions (DNSSEC) is a set of IETF

(Internet Engineering Task Force) standards that have been

created to address the vulnerabilities in the DNS and to

protect from online threats. The main purpose of DNSSEC is

to basically increase Internet security as a whole by

addressing and resolving DNS security weaknesses.

Essentially, DNSSEC adds authentication feature to DNS

that make the system more secure DNSSEC core elements

were specified in the following three IETF Requests for

Comments which have been published in March 2005: RFC

4033 - DNS Security Introduction and Requirements RFC

4034 - Resource Records for the DNS Security Extensions

RFC 4035 - Protocol Modifications for the DNS Security

Extensions Existing proposals for securing DNS are mainly

based on public-key cryptography. The public key

algorithms used for authentication in DNSSEC are

MD5/RSA (Rivest Shamir Adleman Algorithm) and DSA

(Digital Signature Algorithm). Digital signatures generated

with public-key algorithms have the advantage that anyone

having the public key can verify them.

The idea behind it is that every node in Domain Name

Space has a Public Key, and each Message from DNS

Servers is signed using Private Key. Since DNS is Public,

Authenticated DNS root Public Keys are known to all, which

are used to generate Certificates/Signatures to combine the

identity information of Top Level Domain. So, in Domain

Name Space, each parent signs the Public Keys of all its

Children in the DNS tree.

B. Securing DNS with ECC
With technology growing faster, everyone accesses the

Internet through mobile phones. Whether it is used to check

Emails or visit any secure sites, ECC (Elliptic Curve

Cryptography) can be implemented. ECC provides the same

level of Security as RSA[5] with benefits of small key sizes,

faster computation, and memory and energy savings[6].

Small Key Size and Faster Computation: The security level

of 160-bit ECC and 1024- bit RSA is the same. RSA

operations are based on modular exponentiations of large

integers, and security is based on factoring these large

integers. On the other hand, ECC operations are based on

groups of points over elliptic curves and security is based on

discrete logarithm problems (ECDLP). This allows ECC to

have the same level of security with smaller key sizes and

higher computational efficiency. Memory and Energy

savings: ECC requires less power for its functioning, so it is

more suitable for low power applications such as handheld

and mobile devices. On small processors, multiple precision

multiplications of large integers (done in RSA) not only

involves arithmetic operations but also a significant amount

of data transport to and from memory due to limited registers

space. While in ECC, the scalar multiplications involve

additions with no intermediate results to be stored, thereby

requiring less use of registers. So, ECC provides less

memory space and also, the energy required to perform

additions is much less than performing multiplications done

in RSA.

Table 4.1 ECDSA vs RSA

 V. SYSTEM ARCHITECTURE

Satyam Akunuri et al. / IJCTT, 68(4), 1-4, 2020

4

VI. ECDSA IMPLEMENTATION

The key parameters are taken as same as recommended

by NIST, but we are introducing a change in the signing and

verification process.

A. Key Parameters

Some predefined parameters for the ECDSA implementation

used, as follows:

1. Select a prime number (p) of large size.

2. Choose constants (a and b) such that (4a3+27b2) modulo p

is not equal to 0.

3. Generate elliptic curve points Ep (a, b), where Ep (a, b) is

a generalized term for elliptic curve points (x, y).

4. Choose generator point (G) of order n, where an order is a

number of points in the elliptic curve.

5. Select d such that 1 < d < n-1. This is used as a private

key. These parameters are recommended by NIST for federal

government use and include elliptic curves of various bit

lengths (e.g., 192, 224, 256, 384, 521 etc.)[8].

 6. Generate public key Q such that Q = d.G, where ‘.’ Is

point multiplication for ECDSA and is represented as

G+G+G……d times which can be calculated using elliptic

curve arithmetic.

B. Signature Generation
1. Select a random number k to be used only once. That is,

for every new signature generation of a message, a new k is

selected, such that 1 < k < n-1.

2. Generate (r, s) component of signature such that

a. k.G = (x, y) r = x modulo n if r = 0 then repeat 2 again

b. Calculate hash of message (M) whose signature is to be

generated, i.e., e = h (M). c. s = d(r*k – e)-1modulo n //

(modified)

C. Signature Verification
1. Calculate u1 = e*r-1 modulo n // (modified)

2. Calculate u2 = (r*s)-1 modulo n // (modified)

3. Calculate T = u1.G + u2.Q = (x1, y1), where ‘.’ Is point

multiplication and ‘+’ is point addition and can be calculated

using elliptic curve arithmetic.

 4. Calculate v = x1 modulo n

 5. If v = r, a signature is valid.

The above-proposed algorithm is a variant of the algorithms

as described in, providing less complexity in signing.

VII. CONCLUSION

 The purpose of this work is to show the simulation of how

this software system works, but with the ECDSA algorithm

implemented in it. ECDSA is fast at verifying the signatures,

uses a small key size as compared to RSA, and also provides

the same level of security as given by RSA. ECC is a

growing field of the future. So, this work involves DNS

security using ECC. ECC being very secure, smaller key

sizes, less in power and memory consumption gives better

security to small portable devices.

VIII. REFERENCES
[1] Hu Junru, The Improved Elliptic Curve Digital Signature Algorithm,

International Conference on Electronic & Mechanical Engineering

and Information Technology, IEEE, (2011).

[2] Casey Deccio, Jeff Sedayao and Krishna Kant, Prasant Mohapatra,

Quantifying and Improving DNSSEC Availability’, IEEE, (2011).
[3] Ghanmy Nabil, Khlif Naziha, Hardware implementation of Elliptic

Curve Digital Signature Algorithm (ECDSA) on Koblitz Curves 8th

IEEE, IET International Symposium on Communication Systems,
Networks and Digital Signal Processing, IEEE, (2012).

[4] A.Sakthivel, R. Nedunchezhian, Improved The Execution Speed of

Ecdsa Over Gf(2 n) Algorithm for Concurrent Computation Journal
of Theoretical and Applied Information Technology, (2013).

[5] Aqeel Khalique, Kuldip Singh, Sandeep Sood, Implementation of
Elliptic Curve Digital Signature Algorithm, International Journal of

Computer Applications (0975 – 8887), 2(2) (2010).

[6] Vivek Kapoor, Vivek Sonny Abraham, Ramesh Singh, Elliptic Curve
Cryptography, ACM Ubiquity, 9(20) (2008).

[7] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-

Yin Yang, High-speed high-security signatures, (2011).

[8] HONG Jingxin, A New Forward-Secure Digital Signature Scheme,

IEEE, (2007).

[9] El hadj youssef wajih, Machhout Mohsen, A Secure Elliptic Curve
Digital Signature Scheme for Embedded Devices, International

Conference on Signals, Circuits and Systems, IEEE, (2008).

[10] Xue Sun, Mingping Xia, An Improved Proxy Signature Scheme
Based on Elliptic Curve Cryptography, International Conference on

Computer and Communications Security, IEEE, (2009).

[11] Jonathan Petit, Analysis of ECDSA Authentication Processing in
VANETs, IEEE, (2009).

[12] Qingkuan Dong, Guozhen Xiao, A Subliminal-Free Variant of

ECDSA Using Interactive Protocol, IEEE, (2010).
[13] Jalel Ben-Othman, Yesica Imelda Saavedra Benitez, A lightweight

security scheme for HWMP protocol using Elliptic Curve Technique,

11th IEEE International Workshop on Wireless Local Networks,
IEEE, (2011).

[14] M. Janagan, M. Devanathan, Area Compactness Architecture for

Elliptic Curve Cryptography, International Conference on Pattern
Recognition, Informatics and Medical Engineering, IEEE, (2012).

[15] Zhang Youqiao, Zhou Wuneng, An ECDSA Signature Scheme

Designs for PBOC 2.0 Specifications, 9th International Conference
on Fuzzy Systems and Knowledge Discovery,IEEE, (2012).

